33 research outputs found

    Raman spectroscopy of osteosarcoma cells

    Get PDF
    Osteosarcoma is the most common primary malignant bone tumor. In the last years, several studies have demonstrated that the increase of Hydroxyapatite (HA) and Interleukin-6 (IL-6) syntheses compared to those expressed by normal osteoblasts could be used to detect the degree of malignancy of osteosarcoma cells. Conventional biochemical methods widely employed to evaluate bone cell differentiation, including normal and cancerous phenotypes, are time consuming and may require a large amount of cells. HA is a mineral form of calcium phosphate whose presence increases with maturation of osteosarcoma cells. Analogously, IL-6 is a fundamental cytokine whose production is highly increased in osteosarcoma cells. In this study, we employ Raman spectroscopy to the identification and discrimination of osteosarcoma cells from osteo-differentiated mesenchymal stromal cells (MSCs) by detecting the presence of HA and IL-6. However, while the identification of HA is facilitated by the characteristic peak at 960 cm-1, corresponding to symmetric stretching (P-O) mode, the quantification of IL-6 it is much more elusive, being its Raman signal characterized by cysteine, but also by phenylalanine, amide I II and III whose signals are common to other proteins. Supported by an accurate multivariate analysis, the results show that Raman spectroscopy is a high sensitivity technique dealing out a direct and quantitative measurement of specific mineralization levels of osteosarcoma cells. In turn, by exploiting the Surface-Enhanced Raman Scattering stimulated by internalized Gold Nanoshells (AuNSs) and combined with scanning probe microscopies, we were able to employ Raman spectroscopy to study subcellular components locally

    Contribution of Raman Spectroscopy to Diagnosis and Grading of Chondrogenic Tumors

    Get PDF
    In the last decade, Raman Spectroscopy has demonstrated to be a label-free and non-destructive optical spectroscopy able to improve diagnostic accuracy in cancer diagnosis. This is because Raman spectroscopic measurements can reveal a deep molecular understanding of the biochemical changes in cancer tissues in comparison with non-cancer tissues. In this pilot study, we apply Raman spectroscopy imaging to the diagnosis and grading of chondrogenic tumors, including enchondroma and chondrosarcomas of increasing histologic grades. The investigation included the analysis of areas of 50×50 μm2 to approximately 200×200 μm2, respectively. Multivariate statistical analysis, based on unsupervised (Principal Analysis Components) and supervised (Linear Discriminant Analysis) methods, differentiated between the various tumor samples, between cells and extracellular matrix, and between collagen and non-collagenous components. The results dealt out basic biochemical information on tumor progression giving the possibility to grade with certainty the malignant cartilaginous tumors under investigation. The basic processes revealed by Raman Spectroscopy are the progressive degrading of collagen type-II components, the formation of calcifications and the cell proliferation in tissues ranging from enchondroma to chondrosarcomas. This study highlights that Raman spectroscopy is particularly effective when cartilaginous tumors need to be subjected to histopathological analysis

    Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation

    Get PDF
    Sensorineural hearing loss, primed by dysfunction or death of hair cells in the cochlea, is the main cause of severe or profound deafness. Piezoelectric materials work similarly to hair cells, namely, as mechano-electrical transducers. Polyvinylidene fluoride (PVDF) films have demonstrated potential to replace the hair cell function, but the obtained piezoresponse was insufficient to stimulate effectively the auditory neurons. In this study, we reported on piezoelectric nanocomposites based on ultrafine PVDF fibers and barium titanate nanoparticles (BTNPs), as a strategy to improve the PVDF performance for this application. BTNP/PVDF fiber meshes were produced via rotating-disk electrospinning, up to 20/80 weight composition. The BTNP/PVDF fibers showed diameters ranging in 0.160-1.325 μm. Increasing collector velocity to 3000 rpm improved fiber alignment. The piezoelectric β phase of PVDF was well expressed following fabrication and the piezoelectric coefficients increased according to the BTNP weight ratio. The BTNP/PVDF fibers were not cytotoxic towards cochlear epithelial cells. Neural-like cells adhered to the composite fibers and, upon mechanical stimulation, showed enhanced viability. Using BTNP filler for PVDF matrices, in the form of aligned ultrafine fibers, increased the piezoresponse of PVDF transducers and favored neural cell contact. Piezoelectric nanostructured composites might find application in next generation cochlear implants

    Mirror mirror on the wall... an unobtrusive intelligent multisensory mirror for well-being status self-assessment and visualization

    Get PDF
    A person’s well-being status is reflected by their face through a combination of facial expressions and physical signs. The SEMEOTICONS project translates the semeiotic code of the human face into measurements and computational descriptors that are automatically extracted from images, videos and 3D scans of the face. SEMEOTICONS developed a multisensory platform in the form of a smart mirror to identify signs related to cardio-metabolic risk. The aim was to enable users to self-monitor their well-being status over time and guide them to improve their lifestyle. Significant scientific and technological challenges have been addressed to build the multisensory mirror, from touchless data acquisition, to real-time processing and integration of multimodal data
    corecore